
A Caenorhabditis elegans first-stage larva expressing an insulin-like peptide from a sensory neuron, where it regulates physiological responses like developmental plasticity
Welcome
Sensory mechanisms that influence animal physiology and longevity
For optimal survival, an animal has to process complex environmental information to generate the appropriate physiological responses. However, the mechanisms through which animals process complex information remain unknown. Recently, we have identified different neuropeptide signaling pathways that are involved in processing distinct sensory cues to promote different physiological outputs: (i) the neuromedin U signaling pathway in mediating the food-type influence on development and lifespan and (ii) specific insulin-like peptides in promoting distinct developmental switches under certain environments. In the future, we plan to elucidate how these neuropeptides encode and process environmental information to manage different physiological outputs, e.g., development versus lifespan.

Postdoctoral Studies, Genetics and Neurobiology of Aging, University of California, San Francisco PhD, Molecular Biology and Developmental Genetics, University of Zurich



Postdoctoral Studies, Genetics and Neurobiology of Aging, University of California, San Francisco PhD, Molecular Biology and Developmental Genetics, University of Zurich
News
Sifoglu, D., and Alcedo, J. (2022). Homme fatal: how males cause demise. Nat Aging 2, 773-774. doi: 10.1038/s43587-022-00274-0.
Alcedo, J., and Prahlad, V. (2020). Neuromodulators: an essential part of survival. J Neurogenet 34, 475-481. doi: 10.1080/01677063.2020.1839066.
The Special C. elegans Issue of the Journal of Neurogenetics can now be found online Nature's gift to neuroscience: a tribute to Sydney Brenner and John Sulston. Check out all articles, which are freely accessible for a limited period.
Open Positions
Currently, no open positions.